Chapter NLP:II

- II. Corpus Linguistics
 - Empirical Research
 - □ Text Corpora
 - Text Statistics
 - □ Text Statistics in IR
 - Data Acquisition

- 1. Quantitative research based on numbers and statistics.
- 2. Studies phenomena and research qestions by analyzing data.
- 3. Derives knowledge from experience rather than from theory or belief.

- 1. Quantitative research based on numbers and statistics.
- 2. Studies phenomena and research qestions by analyzing data.
- 3. Derives knowledge from experience rather than from theory or belief.

Quantitative versus qualitative research:

- Quantitative. Characterized by objective measurements.
- Qualitative. Emphasizes the understanding of human experience.

- 1. Quantitative research based on numbers and statistics.
- 2. Studies phenomena and research qestions by analyzing data.
- 3. Derives knowledge from experience rather than from theory or belief.

Quantitative versus qualitative research:

- Quantitative. Characterized by objective measurements.
- Qualitative. Emphasizes the understanding of human experience.

Descriptive versus inferential statistics:

 Descriptive. Procedures for summarizing and comprehending a sample or distribution of values. Used to describe phenomena.

1 2 2 2 \rightarrow mean M = 1.75

Inferential. Procedures that help draw conclusions based on values.
 Used to generalize inferences beyond a given sample.

The average number is significantly greater than 1.

Research Questions

What is a good research question? [Bartos 1992]

- □ Asks about the relationship between two or more variables.
- □ Is testable (i.e., it is possible to collect data to answer the question).
- □ Is stated clearly and in the form of a question.
- Does not pose an ethical or moral problem for implementation.
- □ Is specific and restricted in scope.
- Identifies exactly what is to be solved.

Research Questions

What is a good research question? [Bartos 1992]

- □ Asks about the relationship between two or more variables.
- □ Is testable (i.e., it is possible to collect data to answer the question).
- □ Is stated clearly and in the form of a question.
- Does not pose an ethical or moral problem for implementation.
- □ Is specific and restricted in scope.
- □ Identifies exactly what is to be solved.

Example of a poorly formulated question:

"What is the effectiveness of parent education when given problem children?"

Research Questions

What is a good research question? [Bartos 1992]

- □ Asks about the relationship between two or more variables.
- □ Is testable (i.e., it is possible to collect data to answer the question).
- □ Is stated clearly and in the form of a question.
- Does not pose an ethical or moral problem for implementation.
- □ Is specific and restricted in scope.
- □ Identifies exactly what is to be solved.

Example of a poorly formulated question:

"What is the effectiveness of parent education when given problem children?"

Example of a well-formulated question:

"What is the effect of the STEP parenting program on the ability of parents to use natural, logical consequences (as opposed to punishment) with their child who has been diagnosed with bipolar disorder?"

Empirical Research Empirical Research in NLP

Corpus linguistics.

NLP is studied in a corpus-linguistics manner; i.e., approaches are developed and evaluated on collections of text.

Evaluation measures.

An evaluation of the quality of an approach is important, especially of its effectiveness.

Experiments.

The quality of an approach is empirically evaluated on test corpora and compared to alternative approaches.

□ Hypothesis testing.

Methods which verify whether results of an experiment are meaningful/valid by estimating the odds that the results happened by chance.

Empirical Research Empirical Research in NLP

Corpus linguistics.

NLP is studied in a corpus-linguistics manner; i.e., approaches are developed and evaluated on collections of text.

Evaluation measures.

An evaluation of the quality of an approach is important, especially of its effectiveness.

Experiments.

The quality of an approach is empirically evaluated on test corpora and compared to alternative approaches.

□ Hypothesis testing.

Methods which verify whether results of an experiment are meaningful/valid by estimating the odds that the results happened by chance.

Corpus Linguistics

- The study of language as expressed in principled collections of natural language texts, called text corpora.
- □ Aims to derive knowledge and rules from real-world text.
- □ Covers both manual and automatic analysis of text.

Corpus Linguistics

- The study of language as expressed in principled collections of natural language texts, called text corpora.
- □ Aims to derive knowledge and rules from real-world text.
- Covers both manual and automatic analysis of text.

Three main techniques:

- 1. Analysis. Developing and evaluating methods based on a corpus.
- 2. Annotation. Coding data with categories to facilitate data-driven research.
- 3. Abstraction. Mapping of annotated texts to a theory-based model.
- Need for text corpora: Without a corpus, it's hard to develop a strong approach—and impossible to reliably evaluate it.

"It's often not the one who has the best algorithm that wins. It's who has the most data."

Definition 1 (Text Corpus [Butler 2004])

A text corpus is (an electronically stored) collection of data designed with according to specific corpus design criteria to be maximally representative of (a particular variety of) language or other semiotic systems.

The basic unit for representing text is typically a word (captures meaning).

Examples:

- 200,000 product reviews for sentiment analysis
- □ 1,000 news articles for part-of-speech tagging

Corpora in NLP:

- □ NLP approaches are developed and evaluated on text corpora.
- Usually, the corpora contain annotations of the output information type to be inferred.

Text Corpora On Representativeness

- *"extent to which a sample includes the full range of variability in a population"* [Biber 1993]
 Here: Sample is our corpus, population is all of the language variety.
- "A corpus is thought to be representative of the language variety it is supposed to represent if the findings based on its contents can be generalized to the said language variety." [Leech 1991]
 Question: If we find certain features in the corpus, are we likely to find the same features in further data of that type?
- But—what is representative to the users of language?
 "According to claims, the most likely document that an ordinary English citizen will cast his or her eyes over is The Sun newspaper" [Sinclair 2005]
 Keyword: reception versus production
- Corpus representativeness is important for generalization, since the corpus governs what can be learned about a given domain.

Representative Data versus Balanced Data

- A corpus is representative for some output information type C, if it includes the full range of variability of texts with respect to C.
- \Box The distribution of texts over the values of *C* should be representative for the real distribution.
- Balance with respect to a feature means that no value/level of the feature dominates; equally distributed with respect to a feature (e.g. genre, category of linguistic phenomena).
- A balanced distribution, where all values are evenly represented, may be favorable (particularly for machine learning).

Character Encoding [detailed in WT:III-163 ff.]

- Character encoding is a mapping between bits and *code points*, where each code point is associated with a glyph.
 - Glyphs are graphical representations of symbols $a \leftarrow a, A, A, a, A$
 - Getting from bits in a file to characters on a screen can be a major source of incompatibility.
- Charset for English: ASCII
 - Encodes 128 letters, numbers, special characters, and control characters in 7 bits, extended with an extra bit for storage in bytes.
- □ Charset for other European: Latin-1 (ISO-8859-1)

Character Encoding [detailed in WT:III-163 ff.]

- Character encoding is a mapping between bits and *code points*, where each code point is associated with a glyph.
 - Glyphs are graphical representations of symbols $a \leftarrow a, A, A, a, A$
 - Getting from bits in a file to characters on a screen can be a major source of incompatibility.
- □ Charset for English: ASCII
 - Encodes 128 letters, numbers, special characters, and control characters in 7 bits, extended with an extra bit for storage in bytes.
- □ Charset for other European: Latin-1 (ISO-8859-1)

"Even when documents say they are in ASCII or ISO 8859-1, you have to assume that they are lying, because it's extremely common for such documents to be actually encoded in Windows-1252."

[David Hawking]

Text Corpora Character Encoding (Fortsetzung) [detailed in WT:III-163 ff.]

ASCII symbols, hexadecimal notation

Code	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	АСК	BEL	BS	HT	LF	VT	FF	CR	so	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	ЕM	SUB	ESC	FS	GS	RS	US
2	SP	!	н	#	\$	%	&	1	()	*	+	,	-	•	1
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	Α	В	С	D	Е	F	G	Н	Т	J	Κ	L	М	Ν	0
5	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	[Ν]	^	_
6		а	b	с	d	е	f	g	h	i	j	k	I	m	n	0
7	р	q	r	s	t	u	v	w	х	у	z	{		}	~	DEL

Character Encoding (Fortsetzung)

) [detailed in WT:III-163 ff.]

What could go wrong?

NLP:II-18 Corpus Linguistics

Text Corpora Character Encoding (Fortsetzung) [detailed in WT:III-163 ff.]

- Other languages can have many more glyphs:
 - Chinese has more than 40,000 characters, with over 3,000 in common use.
- Many languages have multiple encoding schemes:
 - the CJK (Chinese-Japanese-Korean) family of East Asian languages, Hindi, Arabic
 - must specify encoding, cannot have multiple languages in one file
- Solution: Unicode

Unicode:

- □ All-encompassing charset and encoding for most writing systems.
- □ Allows for multiple languages in one file.
- □ Tailored encoding schemes to translate code points to a byte representation:
 - UTF-8 uses one byte for English (ASCII), and as many as 4 bytes for some traditional Chinese characters (variable length encoding).
 - UTF-16 uses 2 or 4 bytes for every character.
 - UTF-32 uses 4 bytes for every character.
- Applications may use UTF-32 for internal encoding (fast random lookup) and UTF-8 for disk storage (less space).

Text Corpora Character Encoding (Fortsetzung)

Unicode – Private Use Areas (here: KompLett)

k (31	%): Private Us	se Area			\sim				Search:			
	~•	$\mathbf{\Lambda}$	~-	D	-	-	t	7	5	-	3	-
a L	grmacracute J+ea55 (59989)	khgrunderdot U+ea56 (59990)	agrringmacracute U+ea57 (59991)	gcommaacute U+ea58 (59992)	ccommaacute U+ea59 (59993)	Iacutebreve U+ea5a (59994)	Iacutehalfringrigh U+ea5b (59995)	t lielmit eogonek U+ea5c (59996)	icedil U+ea5d (59997)	icircgrav U+ea5e (59998)	icircogonek U+ea5f (59999)	slong U+ea60 (60000)
	ń	ñ	M	<u>\</u>	χ		ş	Е	Ý	11/ /14	$\frac{12}{16}$	18/ 37
e	ngacute J+ea61 (60001)	engtilde U+ea62 (60002)	runemanaz U+ea63 (60003)	minusgrave U+ea64 (60004)	khgrhalfringright U+ea65 (60005)	omacrslashogone U+ea66 (60006)	k epsilonhalfringrig U+ea67 (60007)	h tBreizev rsed U+ea68 (60008)	Facute U+ea69 (60009)	frac11x14 U+ea70 (60016)	frac12x16 U+ea71 (60017)	frac18x37 U+ea72 (60018)
	1/1000	1/100	1/10	1/128	1/12	$\frac{1}{13140}$	¹ / ₁₄₄	1/15	1/18	$\frac{1}{1}$	1/20	1/240
fi	rac1x1000 J+ea73 (60019)	frac1x100 U+ea74 (60020)	frac1x10 U+ea75 (60021)	frac1x128 U+ea76 (60022)	frac1x12 U+ea77 (60023)	frac1x13140 U+ea78 (60024)	frac1x144 U+ea79 (60025)	frac1x15 U+ea80 (60032)	frac1x18 U+ea81 (60033)	frac1x1 U+ea82 (60034)	frac1x20 U+ea83 (60035)	frac1x240 U+ea84 (60036)
	$\frac{1}{25}$	$\frac{1}{27}$	1/30	1/320	1/32	¹ / ₃₆₀₀	$\frac{1}{480}$	$\frac{1}{48}$	1/50	¹ / ₅₇₆₀	$\frac{1}{60}$	1/74
fi	rac1x25 J+ea85 (60037)	frac1x27 U+ea86 (60038)	frac1x30 U+ea87 (60039)	frac1x320 U+ea88 (60040)	frac1x32 U+ea89 (60041)	frac1x3600 U+ea90 (60048)	frac1x480 U+ea91 (60049)	frac1x48 U+ea92 (60050)	frac1x50 U+ea93 (60051)	frac1x5760 U+ea94 (60052)	frac1x60 U+ea95 (60053)	frac1x74 U+ea96 (60054)
	$\frac{1}{7}$	1∕90	и́	Ŧ	Ē	<u>ұ</u>	ų	ע	Ÿ	Ų	¥	Ų
fi	rac1x7 J+ea97 (60055)	frac1x90 U+ea98 (60056)	akutiky U+ea99 (60057)	endkafkamazhb U+eb00 (60160)	endkafschwahb U+eb01 (60161)	ajinchatafpatachh U+eb02 (60162)	bajinchatafsegolhb U+eb03 (60163)	ajinchirekhb U+eb04 (60164)	ajincholemhb U+eb05 (60165)	ajinkamazhb U+eb06 (60166)	ajinpatachhb U+eb07 (60167)	ajinsegolhb U+eb08 (60168)
	ע	ע	X	X	Ņ	X	Ř	X	X	Ķ	Ŕ	Х
a L	jinsinhb J+eb09 (60169)	ajinzerehb U+eb10 (60176)	alefchatafpatachh U+eb11 (60177)	balefchatafsegolhb U+eb12 (60178)	alefchirekhb U+eb13 (60179)	alefcholemhb U+eb14 (60180)	alefkamazhb U+eb15 (60181)	alefpatachhb U+eb16 (60182)	alefschinhb U+eb17 (60183)	alefsegolhb U+eb18 (60184)	alefsinhb U+eb19 (60185)	alefzerehb U+eb20 (60192)

Text as data

String: concatenation of alphabet elements

- □ "Hello world!", "", "00010111100010101", "To be or not to be..."
- essential, elementary data type in computer linguistics
- □ common operations: e.g.
 - concatenation: "Hello" + "World!" + "!" \rightarrow "Hello World!"
 - splitting: split("Hello World!", " ") \rightarrow {"Hello", "World!"}
 - case conversion: uppercase("Hello") \rightarrow "HELLO"
 - substring: substr("Hello", start = 0, length = 4) \rightarrow "Hell"

Document: compound data type

□ (collection of) strings (e.g. title, body) [+ Metadata]

Corpus: collection of documents

Text as data (Fortsetzung)

- Type: (cp. class)
 - □ (abstract) string representing a meaningful concept, e.g. words

Token: (cp. object)

□ (concrete) string as instance of a meaningful concept

In disciplines such as knowledge representation and philosophy, the type-token distinction is a distinction that separates a concept from the objects which are particular instances of the concept."

(Wikipedia \rightarrow Type-token distinction)

Vocabulary:

□ complete set of all types occurring in a [document | collection]

Text as data (Fortsetzung)

Transformation of text into numerical objects. See Text Models for more detail!

Transformed objects \rightarrow Data Mining

process of discovering patterns in large data sets

Metadata

Metadata = text external context / covariate

Metadata = data facet

- Subselections of sources
- Aggregation / differentiation of results

$\text{context} \rightarrow \text{contrast} \rightarrow \text{meaning}$

Text Corpora Research in Language Use

Concordance: (alphabetical) list of principal words (or phrases) used in a book (nowadays: corpus) listing every instance of each with immediate context

ø	CONCORDANCE	English Web 2015 (enTenTen1	5) Q ()	. 🕫 🖉 🖪	
	CQL "in""the"?]]? context" 706,992	2 3 4 5 6 7	8 9 10 11 12	13 14 20	15
=	Details	Left context	88 E ↔ KWI0(16)	Right contex	¥
	391 (j) earlychildhoodmagazine		in humanitarian contexts	, thereby improving the	e physic
\odot	392 (j) nsta.org	isks and activities that occur	in the social contexts	of day-to-day living, wh	nether o
Q	393 (i) ancientdragon.org	universal truth can only exist	in the context	of some particular situ	iation. <
o	394 (j) edtalks.org	<s> He discusses open-ness</s>	in the social context	, the technical area, an	d educa
•∎	395 (j) theolog 18 geek.nz	ord immoral has no meaning	in this context	. <s> We are stuck</s>	saying
≣• ≣	396 (i) dangcongsan.vn	in the EU market, particularly	in the 🗐 text	of the strengthening e	uro.
=•=	397 (i) fifthestate.org	vriter Paul Goodman insisted	in the context	of 1960s movements,	there m
=•=	398 (j) bsa.govt.nz	ster therefore concluded that	in the context	of a news item reportin	ng on a
ţ≡	399 (j) wisc.edu	he consequences of tracking	in contexts	beyond the US and the	e UK, wh
NE	400 (i) dukeandduchessofcamb	. have to picture wildlife crime	in the context	of the overall damage	that's b
δ≣	Ro	ws per page: <u>10 ▼</u> 3	91–400 of 706,992 IK	< <u>40</u> >	ы

[www.sketchengine.eu]

Research in Language Use (Fortsetzung)

Compare usages of a word, analyse keywords, analyse frequencies, find phrases, idioms, etc.

ritten.		
waiting * #response		i X
waiting for an answer	110,000	35%
waiting for a reply	71,000	22%
waiting for a response	59,000	18%
waiting for reply	15,000	4.6%
waiting for your reply	13,000	4.1%
waiting for the answer	12,000	4.0%
waiting for response	10,000	3.2%
waiting to answer	9,600	3.0%
waiting for your answer	7,500	2.3%
waiting for his answer	7,300	2.3%
waiting for my answer	6,400	2.0%

[netspeak.org]

Chapter NLP:II

- II. Corpus Linguistics
 - □ Empirical Research
 - Text Corpora
 - Text Statistics
 - Text Statistics in IR
 - Data Acquisition

Classic processing model for language:

Statistical aspects of language

- □ The lexical entries are not used equally often
- □ The grammatical rules are not used equally often
- The expected value of certain word forms or word form combinations depends on the technical language used (Sub Language)

Questions:

- □ How many words are there?
- □ How do we count?

```
bank<sup>(1)</sup> (the financial institution),
bank<sup>(2)</sup> (land along the side of a river or lake),
banks<sup>(1)</sup>, banks<sup>(2)</sup>, ...
```

How often does each word occur?

Questions:

- □ How many words are there?
- □ How do we count?

```
bank<sup>(1)</sup> (the financial institution),
bank<sup>(2)</sup> (land along the side of a river or lake),
banks<sup>(1)</sup>, banks<sup>(2)</sup>, ...
```

How often does each word occur?

Experiment:

- Read a text left to right (beginning to end); make a tally of every new word seen.
- \Box *n* words seen in total, v(n) different words so far.
- \Box How does the vocabulary V (set of distinct words) grow? \rightarrow Plot v(n).

Vocabulary Growth: Heaps' Law

The vocabulary V of a collection of documents grows with the collection. Vocabulary growth can be modeled with Heaps' Law:

$$|V| = k \cdot n^{\beta}$$

where *n* is the number of non-unique words, and *k* and β are collection parameters.

Vocabulary Growth: Heaps' Law

The vocabulary V of a collection of documents grows with the collection. Vocabulary growth can be modeled with Heaps' Law:

$$V| = k \cdot n^{\beta},$$

where *n* is the number of non-unique words, and *k* and β are collection parameters.

□ Corpus: GOV2

u
$$k = 7.34$$
, $\beta = 0.648$

- Vocabulary continuously grows in large collections
- New words include spelling errors, invented words, code, other languages, email addresses, etc.

Term Frequency: Zipf's Law

- The distribution of word frequencies is very *skewed*: Few words occur very frequently, many words hardly ever.
- For example, the two most common English words (the, of) make up about 10% of all word occurrences in text documents. In large text samples, about 50% of the unique words occur only once.

George Kingsley Zipf, an American linguist, was among the first to study the underlying statistical relationship between the frequency of a word and its rank in terms of its frequency, formulating what is known today as Zipf's law.

For natural language, the "Principle of Least Effort" applies.

Term Frequency: Zipf's Law (Fortsetzung)

The relative frequency P(w) of a word w in a sufficiently large text (collection) inversely correlates with its frequency rank r(w) in a power law:

$$P(w) = \frac{c}{(r(w))^a} \qquad \Leftrightarrow \qquad P(w) \cdot r(w)^a = c,$$

where c is a constant and the exponent a is language-dependent; often $a \approx 1$.

Term Frequency: Zipf's Law (Fortsetzung)

r	w	frequency	$P \cdot 100$	$P \cdot r$	r	w	frequency	$P \cdot 100$	$P \cdot r$
1	the	2,420,778	6.09	0.061	26	has	136,007	0.34	0.089
2	of	1,045,733	2.63	0.053	27	are	130,322	0.33	0.089
3	to	968,882	2.44	0.073	28	not	127,493	0.32	0.090
4	а	892,429	2.25	0.090	29	who	116,364	0.29	0.085
5	and	865,644	2.18	0.109	30	they	111,024	0.28	0.084
6	in	847,825	2.13	0.128	31	its	111,021	0.28	0.087
7	said	504,593	1.27	0.089	32	had	103,943	0.26	0.084
8	for	363,865	0.92	0.073	33	will	102,949	0.26	0.085
9	that	347,072	0.87	0.079	34	would	99,503	0.25	0.085
10	was	293,027	0.74	0.074	35	about	92,983	0.23	0.082
11	on	291,947	0.73	0.081	36	i	92,005	0.23	0.083
12	he	250,919	0.63	0.076	37	been	88,786	0.22	0.083
13	is	245,843	0.62	0.080	38	this	87,286	0.22	0.083
14	with	223,846	0.56	0.079	39	their	84,638	0.21	0.083
15	at	210,064	0.53	0.079	40	new	83,449	0.21	0.084
16	by	209,586	0.53	0.084	41	or	81,796	0.21	0.084
17	it	195,621	0.49	0.084	42	which	80,385	0.20	0.085
18	from	189,451	0.48	0.086	43	we	80,245	0.20	0.087
19	as	181,714	0.46	0.087	44	more	76,388	0.19	0.085
20	be	157,300	0.40	0.079	45	after	75,165	0.19	0.085
21	were	153,913	0.39	0.081	46	us	72,045	0.18	0.083
22	an	152,576	0.38	0.084	47	perce	nt 71,956	0.18	0.085
23	have	149,749	0.38	0.087	48	up	71,082	0.18	0.086
24	his	142,285	0.36	0.086	49	one	70,266	0.18	0.087
25	but	140,880	0.35	0.089	50	peopl	e 68,988	0.17	0.087

Example: Top 50 most frequent words from AP89. Have a guess at *c*?

Term Frequency: Zipf's Law (Fortsetzung)

r	w	frequency	$P \cdot 100$	$P \cdot r$	r	w	frequency	$P \cdot 100$	$P \cdot r$
1	the	2,420,778	6.09	0.061	26	has	136,007	0.34	0.089
2	of	1,045,733	2.63	0.053	27	are	130,322	0.33	0.089
3	to	968,882	2.44	0.073	28	not	127,493	0.32	0.090
4	а	892,429	2.25	0.090	29	who	116,364	0.29	0.085
5	and	865,644	2.18	0.109	30	they	111,024	0.28	0.084
6	in	847,825	2.13	0.128	31	its	111,021	0.28	0.087
7	said	504,593	1.27	0.089	32	had	103,943	0.26	0.084
8	for	363,865	0.92	0.073	33	will	102,949	0.26	0.085
9	that	347,072	0.87	0.079	34	would	99,503	0.25	0.085
10	was	293,027	0.74	0.074	35	about	92,983	0.23	0.082
11	on	291,947	0.73	0.081	36	i	92,005	0.23	0.083
12	he	250,919	0.63	0.076	37	been	88,786	0.22	0.083
13	is	245,843	0.62	0.080	38	this	87,286	0.22	0.083
14	with	223,846	0.56	0.079	39	their	84,638	0.21	0.083
15	at	210,064	0.53	0.079	40	new	83,449	0.21	0.084
16	by	209,586	0.53	0.084	41	or	81,796	0.21	0.084
17	it	195,621	0.49	0.084	42	which	80,385	0.20	0.085
18	from	189,451	0.48	0.086	43	we	80,245	0.20	0.087
19	as	181,714	0.46	0.087	44	more	76,388	0.19	0.085
20	be	157,300	0.40	0.079	45	after	75,165	0.19	0.085
21	were	153,913	0.39	0.081	46	us	72,045	0.18	0.083
22	an	152,576	0.38	0.084	47	perce	nt 71,956	0.18	0.085
23	have	149,749	0.38	0.087	48	up	71,082	0.18	0.086
24	his	142,285	0.36	0.086	49	one	70,266	0.18	0.087
25	but	140,880	0.35	0.089	50	peopl	e 68,988	0.17	0.087

Example: Top 50 most frequent words from AP89. For English: $c \approx 0.1$.

Remarks:

□ Collection statistics for AP89:

Total documents	84,678
Total word occurrences	39,749,179
Vocabulary size	198,763
Words occurring > 1000 times	4,169
Words occurring once	70,064

Term Frequency: Zipf's Law (Fortsetzung)

For relative frequencies, *c* can be estimated as follows:

$$1 = \sum_{i=1}^{n} P(w_i) = \sum_{i=1}^{n} \frac{c}{r(w_i)} = c \sum_{i=1}^{n} \frac{1}{r(w_i)} = c \cdot H_t, \quad \rightsquigarrow \quad c = \frac{1}{H_t} \approx \frac{1}{\ln(t)}$$

where *t* is the size |V| of the vocabulary *V*, and H_n is the *n*-th harmonic number. Constant c is text-independent, but language-dependent.

Thus, the expected average number of occurrences of a word w in a document d of length m is

 $m \cdot P(w),$

since P(w) can be interpreted as a term occurrence probability.

Term Frequency: Zipf's Law (Fortsetzung)

By logarithmization a linear form is obtained, yielding a straight line in a plot:

 $\log(P(w)) = \log(c) - a \cdot \log(r(w))$

Term Frequency: Zipf's Law (Fortsetzung)

Some variations (based on Wortschatz Leipzig corpus deu_news_2022_1M)

NLP:II-40 Corpus Linguistics

© WACHSMUTH/WOLSKA/STEIN/HAGEN/POTTHAST 2020

Remarks:

As with all empirical laws, Zipf's law holds only approximately. While mid-range ranks of the frequency distribution fit quite well, this is less so for the lowest ranks and very high ranks (i.e., very infrequent words). The <u>Zipf-Mandelbrot law</u> is an extension of Zipf's law that provides for a better fit.

$$n \approx \frac{1}{(r(w) + c_1)^{1+c_2}}$$

- Interestingly, this relation cannot only be observed for words and letters in human language texts or music score sheets, but for all kinds of natural symbol sequences (e.g., DNA). It is also true for randomly generated character sequences where one character is assigned the role of a blank space. [Li 1992]
- □ Independently of Zipf's law, a special case is <u>Benford's law</u>, which governs the frequency distribution of first digits in a number.

Term Frequency: Zipf's Law (Fortsetzung)

For the vocabulary, t (types) is as large as the largest rank of the frequency-sorted list. For words with frequency 1:

$$P(w) = \frac{n_w}{N}, \ t = r(n_w = 1) = c \times \frac{N}{1} = c \times N$$

Proportion of word forms that occur only *n* time. For \mathbf{w}_n applies:

$$\mathbf{w}_{n} = r(n_{w}) - r(n_{w} + 1) = c \times \frac{N}{n} - c \times \frac{N}{n+1} = \frac{c \times N}{n(n+1)} = \frac{t}{n(n+1)}$$

For \mathbf{w}_1 applies in particular:

$$\mathbf{W}_1 = \frac{t}{2}$$

Half of the vocabulary in a text probably occurs only 1 time.

Term Frequency: Zipf's Law (Fortsetzung)

The ratio of words with a given absolute frequency n can be estimated by

$$\frac{\mathbf{W}_n}{t} = \frac{\frac{t}{n(n+1)}}{t} = \frac{1}{n(n+1)}$$

Observations:

- \Box Estimations are fairly accurate for small *x*.
- □ Roughly half of all words can be expected to be unique.

Applications:

- □ Estimation of the number of word forms that occur n times in the text.
- Estimation of vocabulary size
- □ Estimation of vocabulary growth as text volume increases
- Analysis of search queries
- □ Term extraction (for indexing)
- Difference analysis (comparison of documents)

Linguistic Diversity (LD)

Type-Token-Ratio is a measure of **LD**. Remember the formula:

- Observation of [Zenker, Kyle 2021]: TTR is not independent of the corpus size. Thus, different sized corpora cannot be compared!
- Note: z-score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured

Linguistic Diversity (LD) (Fortsetzung)

[Zenker, Kyle 2021] compared different measures for LD and identified 3 length-independent canditates.

- MATTR: Moving-average TTR calculates the moving average for all segments of a given length. For a segment length of 50 tokens, TTR is calculated on tokens 1–50, 2–51, 3–52, etc., and the resulting TTR measurements are averaged to produce the final MATTR value.
- □ **HD-D:** The hypergeometric distribution diversity index calculates for each wordtype, using the hypergeometric distribution, the probability of encountering one of its tokens in a random sample of 42 tokens. These probabilities are then added together to produce the final HD-D value for the text.
- □ MTLD: The measure of textual lexical diversity is based on the average number of tokens it takes to reach a given TTR (TTR is calculated on tokens 1–2, 1–3, ..., 1–n, 2–3, ...). The final MTLD value is the average of all the lengths where the TTR < threshold

Chapter NLP:II

II. Corpus Linguistics

- Empirical Research
- □ Text Corpora
- Text Statistics
- □ Text Statistics in IR
- Data Acquisition

Data Sources

Digitally available texts

- natively digital / born digital
- □ retro-digitzed

Metadata: "data about data"

- structural metadata
- descriptive metadata

"Big Data"

- □ 15,3 Mio .de-Domains (31.12.2012)
- □ 1.9 Mio articles in F.A.Z. Archive in 1949–2011
- □ 400 million Twitter tweets per day (2013)

Data Sources | Newspapers

archive of political public sphere, societal knowledge or public discourse

Properties

- □ representativity (?)
- availability improves

Difficulties

- licences
- bad OCR

Example: DIE ZEIT

- □ http://www.zeit.de/archiv
- □ articles since 1946
- a 400.000 articles
- DF + OCR-ed Text

DIE ZEIT: Jahrgang 1948

 $\begin{array}{l} \textbf{Date} \leftarrow 1948\text{-}05\text{-}12\\ \textbf{Author(s)} \leftarrow \{\text{,}GH\text{``, }\text{,}geh\text{``, }\text{,}Gerda \mbox{Heller}\text{``}\}\\ \textbf{Page number} \leftarrow \{1, 1\text{-}2\}\\ \textbf{Section(s)} \leftarrow \{\text{,}Sport\text{``, }\text{,}Leibes\mbox{übungen}\text{``}\}\\ \textbf{Subsection(s)} \leftarrow \mbox{,}Handball\text{``}\\ \textbf{News agency} \leftarrow \{true|false; \mbox{,}dpa\text{``}\} \end{array}$

Date String[] Integer String[] String Boolean

Data Sources | Blogs & Forums

Extract of (political) public discourse

Properties

- expert generated content
- user generated content (comments)

Properties

- high availability
- lesser license restrictions
- no OCR problems

Difficulties

- identifying relevant content
- representativity of content?
- Crawling + Web scraping

numberOfReadings ← 12002

Data Sources | Social network

controlled public spheres

Properties

- □ just in time
- □ really big data

Difficulties

- □ very short text snippets
- □ typos and special language
- □ representativity?
- Data acquisition may be complicated

Data acquisition via APIs

- □ Twitter sample API (1%)
- □ Twitter keyword location search
- Facebook API: retrieve user networks and (public) posts, comments, replies from users

 $\begin{array}{l} \textbf{Type} \leftarrow \{post, \ comment, \ reply, \ tweet\} \\ \textbf{Datetime} \leftarrow 2014\text{-}05\text{-}12 \ 12\text{:}47 \\ \textbf{Author} \leftarrow User_462945 \\ \textbf{Reactions} \leftarrow \{like\text{:}67, \ angry\text{:}472, \ sad\text{:}12\} \end{array}$

Data Sources | Other sources

- Emails
- Parliamentary protocols
- Political documents
 - political speeches
 - party manifestos
 - press releases
- Open questions from (online) surveys
- □ Literature: distant reading of (world) literature
- Scientific publications: lots of science of science studies

Web crawling and scraping

Crawling data

Crawling = massive automated download of data from the web

Uninformed Approach

- define initial list of URLs (seed URLs)
- download web page from seed URLs
- expand list of URLs by analyzing page source (extracting new URLs)

Informed Approach

□ generate list of URLs by patterns, e.g.

```
http://www.spiegel.de/suche/index.html?
suchbegriff=Merkel&quellenGroup=SPOX&fromDate=01.01.2014
```

Web crawling and scraping Crawling data

Web crawling from specific sources: Using site internal search e.g. search for "Merkel" on: http://www.spiegel.de/suche

spiegel.de displays 20 results per page \rightarrow ceil(49 / 20) = 3 result pages

generating a complete list of URLs to retrieve retrieval result links:

spiegel.de/suche/index.html?suchbegriff=Merkel&fromDate=01.01.2014&offsets=49&pageNumber=1
spiegel.de/suche/index.html?suchbegriff=Merkel&fromDate=01.01.2014&offsets=49&pageNumber=2
spiegel.de/suche/index.html?suchbegriff=Merkel&fromDate=01.01.2014&offsets=49&pageNumber=3

Todo: Download HTML from result page URLs and extract all 49 links to article web pages

NLP:II-63 Corpus Linguistics

Web crawling and scraping Scraping Data

Scraping

- Extraction of relevant content from downloaded XHTML source
- Page source = XHTML tree where elements have item class identifiers which can be used for content selection

Steps

- $\hfill\square$ (manual) investigation of page source \rightarrow "inspect element" function in your browser!
- □ identify relevant elements, e.g.
 - <time>Montag, den 13.04.2014</time>
 - <h2 class="article-title">...</h2>
 - <div class="userCommentBody">...</div>

Web crawling and scraping File type: XML

XML = Extensible Markup Language

(semi-)structured data in hierarchy

exactly one root element

nested child elements in "tree" structure

nested tags:

- elements: opening/closing tags
- attributes: properties of elements
- text: unstructured data entity

Web crawling and scraping File type: XHTML

XHTML

- concrete defined schema on XML to represent web content
- special elements:
 - <html/>, <head/>, <body/>, , <h1/>, <form/>, <div/> ...
- □ special attributes:
 - id: e.g. <div id="main-content">...</div>
 - class: e.g. <h2 class="article-title">...</h2>
- Can be processed like any other XML document

Application scenario

- □ Download all Webpages containing "TTIP" from website www.nytimes.com (→ XHTML files)
- Extract date and headline from XHTML files via XPath
- □ Write URL, date, headline into CSV file for further analysis

Web crawling and scraping

XPath [detailed in WT:III-311 ff.]

XPath = query language to select items in XML trees by:

- element position
- element name
- □ attribute value

Examples

```
□ //
```

- > //h2[@class='article-title']
- **u** //p
- //div[@id='main-content']/p
- > //div[@class='article-date']

```
<html>
<head>...</head>
<body>
 <div
class="article-date">2017-04-14</div>
 <div id="main-content">
   <h2 class="article-title">...</h2>
   <,</p>
   ...
 </div>
 <h2 class="comment-title">...</h2>
 ...
 Buy watches!
</body>
</html>
```

Web crawling – Example

Web Crawl 2021 (for German text)

- Project context: Wortschatz Leipzig
- □ Used crawler: <u>Heritrix (Internet Archive)</u>

		Raw		After cl	eaning*	
LCC-DE-2021 subcorpora	Sources (URLs)	Chars	Tokens	Sources (URLs)	Tokens	
deu-de_web_2021	317.400.000	1,4T	182.800.000.000	280.139.875	75.778.591.663	
deu-at_web_2021	268.000.000	1,1T	140.400.000.000	225.714.422	45.324.844.491	
deu-com_web_2021	1.560.000	7,5G	966.000.000	1.500.000	375.000.000	
deu-eu_web_2021	5.300.000	52,2G	7.400.000.000	3.500.000	1.300.000.000	
deu-lu_web_2021	3.600.000	12,9G	1.700.000.000	3.000.000	569.000.000	
deu-hu_web_2021	400.000	1,1G	151.000.000	328.000	60.200.000	
LCC-DE-2021 TOTAL	596.260.000	3,02T	333.417.000.000	514.000.000	123.408.000.000	