Chapter NLP:IV

- IV. Text Representation Models
 - Introduction to Text Representation Models
 - □ Bag of Words / Vector Space Model
 - □ Similarity Measures in Natural Language Processing

Introduction to Text Representation Models

How to represent Text? Digitally available texts

Introduction to Text Representation Models Bag of words

Bag of words hypothesis: "The frequencies of words in a document tend to indicate the relevance of the document to a query" [Turney, Pantel 2010]

Bag metaphor

- □ frequency is important
- order can be neglected

Example word list from presidential speech: shall(12), amendment(7), states(7), constitution (6), congress (4), united (4)

Chapter NLP:IV

IV. Text Representation Models

- □ Introduction to Text Representation Models
- □ Bag of Words / Vector Space Model
- □ Similarity Measures in Natural Language Processing

Vector Space Model [Salton et. al. 1975] How to represent Text with the Bag of Words assumption?

Idea: Encode textual

- documents in vectors
- corpora in matrices

Data = event counts for applications like machine learning and statistics

Example corpus:

- \Box D_1 : Kim is leaving home.
- \square D_2 : Kim is at home.
- \square D_3 : Karen is leaving.

Dimensionality of vector space

- $\square |D| \times |V| \text{ where } |D|: \text{ Number of } documents, |V|: \text{Vocabulary}$
- **\Box** Example matrix dimensions: 3×7

	Kim	is	leaving	home	-	at	Karen
D_1	1	1	1	1	1	0	0
D_2	1	1	0	1	1	1	0
D_3	0	1	1	0	1	0	1

Vector Space Model [Salton et. al. 1975]

Document-Term-Matrix

- DTM's may get very large
- Events: Frequency counts of word types in each document
- □ 100% Bag-of-Words
- □ Very sparse (contains approx. 95% zeros)
- variations:
 - Binary event counts
 - paragraphs as documents
 - sentences as documents
 - additional n-grams (n > 1) as events

- ...

Vector Space Model [Salton et. al. 1975] Special case for encoding sequences of text

One Hot coding: A finite sequence of binary numbers where only one number gets the high value (1) and the others are low (0).

□ In case of text we have a sequence
$$\delta_{i,j} = \begin{cases} 1, & \text{if } w_j = w_i \\ 0, & \text{else} \end{cases}$$

- \Box where *i* is the word position, *j* is the index in the vocabulary.
- □ Example:

	Kim	is	leaving	home	-	at	Karen
D_1.1	1	0	0	0	0	0	0
D_1.2	0	1	0	0	0	0	0
D							
D_1.5	0	0	0	0	1	0	0

 The Binary encoding for a single word has the dimensionality of the vocabulary.

Document representations D.

The set of index terms $T = \{t_1, \ldots, t_m\}$ is typically composed of the word stems of the vocabulary of a document collection, excluding stop words.

The representation d of a document d is a |T|-dimensional vector, where the *i*-th vector component of d corresponds to a term weight w_i of term $t_i \in T$, indicating its importance for d. Various term weighting schemes have been proposed.

Example Similarity Function ρ for a document: Cosine Similarity

Vector Space Model Example

The angle φ between $\mathbf{d_i}$ and $\mathbf{d_j}$ is about 67°, $\cos(\varphi) \approx 0.38$.

Example Term Weighting: *tf* · *idf*

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- \Box *tf*(*t*, *d*) denotes the normalized *term frequency* of term *t* in document *d*. The basic idea is that the importance of term *t* is proportional to its frequency in document *d*. However, *t*'s importance does not increase linearly: the raw frequency must be normalized.
- df(t, D) denotes the *document frequency* of term *t* in document collection *D*. It counts the number of documents that contain *t* at least once.
- **a** idf(t, D) denotes the *inverse document frequency*:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency.

A term weight w for term t in document $d \in D$ is computed as follows:

$$\omega(t) = tf(t, d) \cdot idf(t, D).$$

Example Term Weighting: *tf* · *idf*

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- tf(t, d) denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t's importance does not increase linearly: the raw frequency must be normalized.
- $\Box \quad df(t, D) \text{ denotes the document frequency of term } t \text{ in document collection } D.$ It counts the number of documents that contain t at least once.
- \Box *idf*(*t*, *D*) denotes the *inverse document frequency*:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency.

A term weight w for term t in document $d \in D$ is computed as follows:

 $\omega(t) = tf(t, d) \cdot idf(t, D).$

Example Term Weighting: *tf* · *idf*

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- tf(t, d) denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t's importance does not increase linearly: the raw frequency must be normalized.
- $\Box \quad df(t, D) \text{ denotes the document frequency of term } t \text{ in document collection } D.$ It counts the number of documents that contain t at least once.
- \Box *idf*(*t*, *D*) denotes the *inverse document frequency*:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency.

A term weight w for term t in document $d \in D$ is computed as follows:

 $\omega(t) = tf(t, d) \cdot idf(t, D).$

Example Term Weighting: *tf* · *idf*

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- tf(t, d) denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t's importance does not increase linearly: the raw frequency must be normalized.
- $\Box \quad df(t, D) \text{ denotes the document frequency of term } t \text{ in document collection } D.$ It counts the number of documents that contain t at least once.
- \Box *idf*(*t*, *D*) denotes the *inverse document frequency*:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency.

A term weight w for term t in document $d \in D$ is computed as follows:

$$\omega(t) = tf(t, d) \cdot idf(t, D).$$

Term Weighting: *tf* · *idf*

Plot of the function $idf(t, D) = \log \frac{|D|}{df(t, D)}$ for |D| = 100. idf(t, D) 4 3 2 1 0 25 50 75 100 0 df(t, D)

Remarks:

- Term frequency weighting was invented by Hans Peter Luhn: "There is also the probability that the more frequently a notion and combination of notions occur, the more importance the author attaches to them as reflecting the essence of his overall idea."
 [Luhn 1957]
- □ The importance of a term t for a document d is not linearly correlated with its frequency. Several normalization factors have been proposed [Wikipedia]:
 - tf(t,d)/|d|
 - $1 + \log(tf(t, d))$ for tf(t, d) > 0

- $k + (1-k) \frac{tf(t,d)}{\max_{t' \in d} (tf(t',d))}$, where k serves as smoothing term; typically k = 0.4

- Inverse document frequency weighting was invented by Karen Spärck Jones: "it seems we should treat matches on non-frequent terms as more valuable than ones on frequent terms, without disregarding the latter altogether. The natural solution is to correlate a term's matching value with its collection frequency."
- Spärck Jones gives little theoretical justification for her intuition. Given the success of *idf* in practice, over the decades, numerous attempts at a theoretical justification have been made. A comprehensive overview has been compiled by [Robertson 2004].

Pruning of vocabulary in Vector Space Model

Vocabularies even of small collections can get very large (5.000 German newspaper documents $\rightarrow |V| > 300.000$ types)

- performance issue in machine learning tasks
- meaningful semantics
- Pruning = filtering the vocabulary of a collection by minimum / maximum thresholds of token occurrence
- Very useful preprocessing step to reduce vocabulary size:
 - Count occurrence of types in the complete corpus
 - keep only those terms which occur above
 / below a well-defined threshold

Term Frequency

- □ absolute pruning
- sum all term occurrences in all documents filter terms which occur
 e.g. count(term) > 1 AND count(term) < 1000

Document Frequency

- □ relative pruning
- for each term count number of documents in which it is contained allows for filters like: terms which occur e.g. in
 - more than 99% OR
 - less than 1%
 - of all documents

Remarks:

- □ Linguistic Preprocessing shall reduce / unify data for application specific purpose (See slides about text preprocessing)
- □ May contain various steps in row:
 - Data cleaning: encoding, spelling correction, duplicate filtering
 - Removing uninformative data: noise, duplicates, stopwords, dictionary lists
 - Unification: punctuation, capitalization, stemming, lemmatization
 - Pruning: remove low/high frequent terms
- Best setup dependent on final analysis task requirements
 - to be derived experimentally
 - or by analyst experience
- □ Caution: order of steps influences results!